Enhanced failure analysis on open TSV interconnects

Jens Beyersdorfer
Frank Altmann
Fraunhofer Center for Applied Microstructure Diagnostics (CAM) Halle, Germany

Franz Schrank
ams AG Unterpremstaetten, Austria
Open TSV technology by ams

- Demonstrator for TSV - 3D interconnect technology for fast vertical signal transfer between image sensor and controller device
- Low T plasma enhanced Si/Si Dioxide direct bonding.
- Open TSV structure (BOSCH process)
- Ti/TiN /W/Al sidewall metallisation
Purpose

Failure modes:
1) TSV series resistance increase
 → Cracking or corrosion of conducting layer
2) TSV-surrounding substrate leakage
 → Defects/rupture of sidewall oxide isolation

Reliability risks:
- Compromised passivation
- Inadequate cleaning of TSV sidewall layers → adhesion
- Residual stresses in TSV sidewall layers
- Undetected (latent) manufacturing flaws in sidewall isolation oxide layer
Outline

- Challenges of open TSV failure analysis
- Defect localisation
 - Defect localisation using Photo Emission Microscopy (PEM)
 - Defect localisation using Lock-in Thermography (LIT)
 - Defect localisation using Electron Beam Absorbed Current (EBAC) in the SEM
- Defect preparation
- Case study
- Summary
Challenges of open TSV FA

FA challenges:
- Short at 63000 µm² area of inner TSV wall
- Access for further SEM/TEM physical analysis

Adapted FA methods:
- 3D localization by specimen tilt and stepwise defocusing (PEM, LIT)
- Precise short localisation within TSV by SEM/EBAC
- Large area pre cross-sectioning by mech. polishing or laser milling combined with plasma-FIB prep. and final FIB/SEM investigation
Defect localisation

3D TSV FA – using depth-resolved PEM

Focal series to localize the defect coordinates in 3 dimensions
Defect localisation

1 – Microscope chuck
2,3 – Mounting magnets
4,5 – Mounts
6 – Mirror adjustment screws
7 – Stub locking screw
8 – Mirror mount
9 – Polishing stub
10 – First surface
11 – 3D integrated device (with TSVs)
12 – Emission microscope objective lens
13 – Probe needles
Defect localisation using Lock-in Thermography (LIT)

- Electrical defects causing local temperature increase (shorts, increased interconnect resistance)
- Detection by microscopic thermal imaging
- Averaging over many lock-in periods improves signal-to-noise ratio (detection limit: few µW dissipation power, few µm spatial resolution)
Defect localisation

LIT Focus series

Surface

Defect position

Focus positions

-200 µm

-150 µm

-100 µm

Surface

Defect localisation

Amplitude [mK]

Position [px]

0 1 2 3 4

0 20 40 60 80 100

Distance to Surface [µm]

eniac Aeneas
Defect localisation using EBAC method

- SEM primary electrons reach the Poly-Si plate at suitable primary energy, the absorbed current is measured and amplified.
- Current divider is active at the GOX short, EBAC current flows partly through Silicon substrate.
 - Locally reduced EBAC current at defect site.
Defect localisation

using EBAC method

SEM Parameter:
- 15 keV acc. Voltage
- 4 nA PE current
- -0.4 V biasing of sidewall metallization
- Resulting current flowing through the defect 175 nA
- Inverted EBAC image (red) overlaid with SEM image
Defect preparation

Precise cross-sectioning for SEM/FIB defect access

- Precise mechanically polishing (Allied Multiprep Tool)
Defect preparation

Precise cross-sectioning for SEM/FIB defect access

- Alternative approach: short pulse laser milling
- 532 nm, 10 ps, averaged pulse power, 0.2 µJ at 200 kHz rep rate
- Problem: redeposition (debris)
Defect preparation

High throughput cross sectioning by Laser-FIB

- ZEISS AURIGA FIB/SEM platform
- ns DPSS laser 355 nm wavelength adapted to the load lock
- CAD Software for laser patterning
- Specimen holder for calibration of SEM and laser coordinates provides about 10 µm precision for site specific laser milling
Defect preparation

Precise cross-sectioning by Plasma FIB preparation

- Focused ion beam current >1 µA
- Xe ions with higher sputter yield
- More than 20x faster milling than for conventional Ga-FIB:
 - Xe: 25,000 µm³/min @1 µA (Si)
 - Ga: 1000 µm³/min @65 nA (Si)
- Beam currents 1.5 pA to > 1.3 µA
- Image resolution < 25 nm
FA of sidewall shorts

Case study: electrical shorted TSV

- Leakage current between metallization to substrate: several μA @10 V
- Electrical behavior like Diode characteristic
- 3D Localization by LIT defocus series and EBAC
- Short at sidewall in 200 μm depth (bottom edge)
FA of sidewall shorts

Case study: electrical shorted TSV
Mechanical pre-preparation

Precise pre cross-sectioning by mechanically grinding and polishing
FA of sidewall shorts

Case study: electrical shorted TSV investigated by FIB/SEM analysis

Specimen 45° tilted and rotated to get access for both SEM and FIB
FA of sidewall shorts

Case study: electrical shorted TSV investigated by FIB/SEM analysis

Cross-section 1

TSV sidewall metallization
FA of sidewall shorts

Case study: electrical shorted TSV investigated by FIB/SEM analysis

Electrical contact between Si-particle and W-layer

Si particle

Si sidewall level

Cross-section 2
Case study: electrical shorted TSV investigated by FIB/SEM analysis

- Position of Si – particle in CS 2
- Inhomogeneous Si-substrate connected to Si-particle
- Cross-section 3
- Si sidewall level

FA of sidewall shorts
FA of sidewall shorts

Case study: shorted TSV with nA leakage current

EBAC Localization:
- 15 keV acc. Voltage
- 6 nA PE current
- -0.25 V biasing of sidewall metallization
- Resulting current flowing through the defect 4.8 nA
- Inverted EBAC image (red) overlaid with SEM image
FA of sidewall shorts

Case study: shorted TSV with nA leakage current

- Rough Plasma FIB milling with 1.3 µA beam current, box dimensions of 700 µm x 300 µm and 500 µm depth (5 h)
- Local TSV opening and sidewall polishing with 70 nA (30 min)
FA of sidewall shorts

Case study: shorted TSV with nA leakage current

- Delamination and lifting of sidewall layers after PFIB opening -> low interface adhesion, residual stress
- EBAC signal identifies crack of sidewall layer
- Leakage probably caused by residues inside crack

Further TEM invest. planned to analyse interface problems
Summary

- LIT and EBAC imaging techniques have been successfully adapted for three dimensional and short localization within open TSV structures.

- Precise mechanically grinding and ps laser milling was demonstrated for precise cross-sectioning for further FIB/SEM physical analysis.

- Advanced as well as time efficient preparation techniques were presented for cross sectioning of TSV structures by Laser-FIB and/or Plasma FIB preparation.

- Feasibility of these techniques was demonstrated on devices with shorted open TSV structures and their particular root causes could be identified.